Parameter estimation for process control with neural networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive parameter estimation for categorical process control

Statistical process adjustment (SPA) is utilised prevalently in novel manufacturing scenarios. When quality characteristics rather than internal process variables are inspected for the purpose of quality control, data with different resolutions may be collected. This paper proposes a Bayesian framework for parameter estimation when only categorical observations are available. The proposed metho...

متن کامل

Regularization parameter estimation for feedforward neural networks

Under the framework of the Kullback-Leibler (KL) distance, we show that a particular case of Gaussian probability function for feedforward neural networks (NNs) reduces into the first-order Tikhonov regularizer. The smooth parameter in kernel density estimation plays the role of regularization parameter. Under some approximations, an estimation formula is derived for estimating regularization p...

متن کامل

State Estimation and Control of Nonlinear Process Using Neural Networks

This paper considers the use of neural networks for non-linear state estimation, identification and control of non-linear processes. The non-linear identification is using feed-forward neural networks as a useful mathematical tool to build a model between the input and the output of a non-linear process. In this paper we consider the possibility of on-line state estimation of the actual paramet...

متن کامل

Fast cosmological parameter estimation using neural networks

We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called COSMONET, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released PICO algorithm of Fendt & Wandelt, but has several additional benefits in terms of ...

متن کامل

Hurst Parameter Estimation Using Artificial Neural Networks

The Hurst parameter captures the amount of long-range dependence (LRD) in a time series. There are several methods to estimate the Hurst parameter, being the most popular: the variance-time plot, the R/S plot, the periodogram, and Whittle’s estimator. The first three are graphical methods, and the estimation accuracy depends on how the plot is interpreted and calculated. In contrast, Whittle’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Approximate Reasoning

سال: 1992

ISSN: 0888-613X

DOI: 10.1016/0888-613x(92)90008-n